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Consider a difference - differential equation of neutral type 

5’ (1) = f (t, r (t), z (t - At), cc’(t - At)) 

where At > 0 is a small constant lag, and assume that there exists a 

periodic solution with the period T of the degenerate equation 

(1) 

x’ (1) = f CL x (% x (% 2’ (q), x (0) = z” (2) 

There the following theorem is valid. 

Theorem. Let the function f = f(t, x, y, u) in a certain neighbor- 

hood of the degenerate solution (2) have continuous second derivatives, 

and satisfy in this neighborhood the condition 

I1,I<a<l (3) 

Moreover, let the degenerate solution be asymptotically stable in 

the first approximation, i.e. 

where the parenthesis around the indices indicates that the derivatives 

are being taken along the degenerate solution. 

Then, for sufficiently small At, there exists a unique periodic solu- 

tlon with period T of equation (1). 
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For this solution we shall construct an asymptotic representation in 
powers of the small lag At. 

Proof. Let us construct successively the functions x,(t), determining 
them as solutions of the equations 

x’,,+~ (t) = f (w,,+~ Oh x,,+~ (t-At)), x,cl 0 - Ad) (0 < t < n (5) 
x,+1 0) = xfl (T d- t) for - At<t<O 

x,,(l)=X(f) for - Atdt60 

From the results of the paper by Vasileva [I] it follows that the 
solution of equation (5) exists, if inequality (3) is fulfilled. We 
prove that sequence {x,(t)) is uniformly bounded and equicontinuous on 
the segment [ -At, ~1. We have 

2’ - 31’ = f 0, x0, [%I), [%‘I - f 0, x, x9 x’) = 5,* bo - xl + f,* 1% - xl + 
+ r,* Ix’ - x.1 + ff 03 

Here 

IR I = I f 0, x, Ixl, Ix’11 - f 0s xt x, x.1 I <&At 

and we shall denote [zl E I( t - At); the star indicates that the argu- 
ments are taken at an intermediate point. 

From [d follows 

1x0-x I<CAh lx,‘-x’I<CAf (- At(t<T) (7) 

Then 

1x,-x- [x0-x]I<CAt*, Ir,‘-xX’- [xe’-x*]I<CAt* 

(the second inequality follows from equation (6)); therefore equation 
(6) may be written 

20 *- x’ = (f(,, + flu,) b, - x) d f(u) b.’ - x3 + R + 0 tW 
x,--=0 for t = 0 

Solving this ordinary differential equation, we obtain 

(8) 

I 

x0-x = 

s 
[R + 0 (AP)] exp 

c 
t j(x) + f(u) & d 
e 1 - f(U) s 

0 8 

and consequently, because of (3) and (4) 

1x0- xl< y C,At + 0 (At2) < 

Denoting 

b, = max I f, I, b, = max I f, I 
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for points pertaining to a certain neighborhood of the degenerate solu- 

tion, we obtain easily from (8) and ~9) 

Similarly, from t13 we have 

Then again 

lx,--X- [ xl - x] j < CAP, I q’ - 1‘ - [sl’ - x.1 1 <CAP 

Therefore 

From this, using (5) and (91, we obtain 

I x1 - xl <C,Ate-Yf + C,At, y= $$& 

Reasoning analogously we obtain 

From this follows the uniform boundedness and equicontinuity of 

sequence (x,(t)) on the segment -At d t B T, 

Let us prove that ou this segment sequence jr,{ t)) and the sepuence 

of the derivatives {x,‘(l)) are uniformly convergent. The limit function 

will evidently give the solution of the problem posed. 

Thus, let us consider the difference x~+~ - xn. It satfsfi@s the 

equation 

As in the proof of the uniform boundedness of the sequence, we pass 

to the ordinary differential equation, estimating first the differences 

IX r&+x - fF?z -- Lx ?a+1 - qJ I t I Zn+z’ - I’, - bn*f - q&‘i * 
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As a result we obtain 

z nt1 - % = (f,* -+ f,*) (ln+l - qJ t; f,*(z'n+l- "'n) 9 0 (&I 

or 

f,* + f,* 
"ml- 2, = 1 - r,* (%+1 - qJ+ O(qJ 

JR,, I < CAt (En + En-1 + tin + rln-1)’ E, = max I zntl - I,, I 

rln = sup Iz’,+r - xa’ I 

x,+1 tt) - rn tt) = txn+l 
t f,*+Y,+ 

(0) - 2, (0)) exp 5 l _ f * ds -t- 0 (%) 
0 u 

From (15) it is easy to obtain 

I%+1 m - %(nI<~lI~,,tl(o) - 2, (0)l-k IO (QI 

But by construction 

%I+1 (T) - r, (n = In+2 (0) - "n+l (0) 

therefore the inequality takes on the form 

I zn+2 (0) - x,,+~ (0) I < a, I z,+] (0) - *,, (0) I f I 0 &,)I 

1763 

(!..:) 

(1,) 

(15) 

f.16) 

From the formula analogous’ to (15) it is easy to conclude for the 

difference x,,+~ - xwl 

E,,, < I I,,+~ (0) - 2,+x (0 )I -I- 0 UL+JI (I?! 

On the other hand, by definition 

I %+l (0) - 2, (0) I 5 E, I * 

By means of (16)) (17)) (18)) (13) and (14) we obtain : Ii-. rt-~ur:-b~,‘, a? 

formulas 

%7,+2 < al%,+1 -$ CAt (En,, + E,, T r~n+~ f ‘I,.) !I,’ 

Let a0 = mar (I,, t2, ql. q2). B ecause of estimates 4 :!) ::nd (1’:) we 
have a0 < CAt. We prove that for n > 0 the formula nolds 

t bn+2 < (a1 + dn Jo (E > 0) (1 .!,-I\ I 

where E is arbitrarily small for At - 0. We use the method of induction. 

From (19) we have 
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ES <ala0 + CAt ha0 = (al 4 4CAt) a0 < (al + 8) a, 

if 

e > 4CAt (21) 

If together with (21) 

( 
bl -fi b, 2 

E>CAt 
4CAt 

I+ l_a+a,f+ (22) 

is also fulfilled, then 

El < al (al d -9 a0 f CA1 (2a. + (al + e) a0 d be (al + 4 a0 + @Ata,) < 

<(a, -t 4 (al f CAt + be 4CaAta 
CAt + a% f ai_e) a, < (al f e)” a0 

1 1 

Let moreover E satisfy also the estimate 

e>CAt I+ ( (23) 

Assuming now that for n < I inequality (20) is true, we prove it for 
n = II + 1. From (19) we have 

L+s < =1 (a1 + 8) m a0 f CAt [(a, -f e)“’ a, + (aI + elmmlao + 
c 

+ E (al + e)m a0 f * (al -F elm-l a, f CAt [(al + e)“‘-’ a0 -+ 

-t (al Q eY2 a0 -P 
4 + ba 
l-_a (al + ejm-’ a0 Q be (al + ejme2 a, d 

+ CAt 
[ 

b1-F bz (al -b ejmw2 a, + (al -+ e)m-s a0 f l-_a (al -k eJmT2 a0 9 

bl + br 
+ ~fa(al + elmo3a0 + . . . I...]...] < a0 (al + e~~[al + CAt (I + z) + 
+ se (1+ b*) (1 + CA;) + (s)” (1 + ‘e) (1 + CAt) + . . . ] < 

[ ( 
bl + bz 

< a0 (al + e)m ~1 + CAt i+ l-_a 1 ( + I+ e) (1 + CAt) x 

X ( 
CAt 

al + e - CAt )I = cl0 (al + 8)” 01 + C& 1 + l-_a [ ( h + ba 
i( 1 + aI y; _t ;At )I 

Since estimate (23) is fulfilled, we have 

Em+, < (~1 + s)m+‘ao 

which was to be proved. 

Since al t E < 1, from (20) and (19) follows the uniform convergence 
of sequences {x,(t)) and {x,. (t)) on the entire interval - /!~t < t d T. 

Thus. the existenre of a periodic solution of equation (1) is proved. 
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We prove that in a small neighborhood of the degenerate solution there 
does not exist another periodic solution of equation (1) different from 
the constructed one. 

Let another periodic solution x1 of equation (1) exist. Then, repeat- 
ing for the difference x - x, the reasoning carried out for the proof 
of the convergence of sequende {x,,(t)), we obtain 

rnexrnT,(n+l)r] I r - %I I < (aI + T2 max[o,Tl I 2 - 

where o > 0 is small, as is the selected neighborhood of 

solution. 

Xl I 

the degenerate 

Since x and x1 are periodic 

max[nT,(n+l)T] 1 2 - Zl 1 = max[o.T] 1 z - % 1 

and since in a small neighborhood of the degenerate solution a1 t u < 1, 
Ix - x11 = 0, as was to be proved. 

The theorem is now proved. We pass to the question of construction of 
the asymptotic representat ion. 

By construction of the periodic solution and because of inequalities 
(11) and (12), we obtain the formula for the zero approximation 

x, = X( f x, lz- XI I <CA4 1 2’ - X,‘] <CAt (24) 

Consider the following series whose partial sums give the necessary 
asymptotic formulas: 

5 Atkxk(t) (25) 
k=o 

Substituting this series into equation (l), expanding the right-hand 
side by powers of At, and equating the coefficients of equal powers of 
At, we obtain equations for the terms of series (25). For example 

However, to determine the terms’of series (25), it is necessary to 
give the initial conditions. The initial condition for the zeroth term 
x0(O) = x0 is known, therefore x0(t) will be found. We transcribe now 
the equation for the functions xk(k = 1, . . . , n), separating in it the 
terms containing zk, and denote the remainder by Dk(t) 
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xx’ (4 = (f(X) + f(,)) “k a; f(u) xk’ + D, (t) 

Or, solving for the derivative, we obtain 

xk’ = Fxk -p B,, F = (f(x) + f(,,) (1 - f(a))-‘, B, = D, (1 - f(,,)-’ (26) 

We remark that the remainder Dk( t) contains functions xi(t) for’i < k. 

Assume that all xi(t) for i < k are found and that all the functions 

xi(t) (i < k) are periodic with period T, we shall determine then %k(6) 

from the condition of periodicity of the function %k(t). 

Solving equation (26) we obtain 

‘I 

wk (T) = xk (0) exp i F (t) dl + i Bk (s) exp i F (%) df ds 
0 I! s 

But by the condition of periodicity xk(T) = %k(6). Therefore we have 

finally 

T 

[ Bk (s) exp 5 F (E) dE dr ) (i - exp 

T 

s F (t) dt) 
-1 

(27) 
0 s 0 

Thus, knowing x;(t) for i ( k, we determine SlSO %k(t). Since for 

unity the assertion is true, using the method of induction, one can find 

all xk(t) for k = 0, 1, . . . , n. We remark that all functions zk(t) are 

periodic with the period T. 

We prove now that if the initial conditions are determined by formula 

(27) I then the function 

n 

X, = 2 Atkxk (28) 

differs from the oeriodic solution of equation (1) by a magnitude of 

the order 

As was 

O(At) . 

O(At”+’ ;. 

already established, Au = x -x0 = O(At) ’ and A,,‘= x ’ - x0. = 

Let us separate now in the equation for A,, the terms with accuracy 

to O(At’). We have 

40’ = f (1, 4, + 20, [&I + sol, 1 Ao’ 4- ro.1) - f 0, x0, xor zo’) = fx+b + f,* [&I 4 

+ f,* [Ao’l d- f 0, xi,, [x,1, [xo’l) - f 0, x01 20, ~0’) = f&o + f8) A, + f(u) A,’ + 

+ D, Cd At + 0 (At31 
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A,,’ = FA, $ B,At + 0 (AP) (2% 

Because of the periodicity of the 
ence A,,(t) is also periodic with the 
and using equality Ao(0) = A"(T), we 

Aa (0) = At(\h UW\ F (5) & 
0 8 

Comparing formulas (26) and (29). 

functions x and x,,, their differ- 
period T. Solving equation (29) 
find 

ds I- 
)( 

exp i F (t) dt)-‘+ 0 (At”) (30) 
0 

(27) and (30) for k = 1. we find 

I x - (~0 + At4 I < CAt2, 1 x’ - (x0’ + Atx;) 1 <CAP 

Thus, let for k < n - 1 the estimate 

Ix- X,1 <CAtk+‘, 1 z’ - X,‘l< CAtk+l 

be proved. la show 
as in the proof of 
for the difference 

find 

Since A n_1(0) = 

T 

that it is true also for k = n. Indeed. proceeding 
the first approximation, separating in the equation 
A =x-x~_~ n-l terms with accuracy to O(At"+') we 

A’n-1 = PA,_, + Am, + 0 (At”+l) (31) 

A n_l(nD we find from (31) 

T T 

1 x - X, I < CAtn+l, 1 x’ - X; I < CAt”+l (33) 

which was to be proved. From the above it is clear that for estimate 
(33) to be fulfilled, it is sufficient that the function f be n + 1 
times continuously differentiable in a certain neighborhood of the de- 
generate solution (n al). 

A,_, (0) = At” (1 B,(s) exp 5 F (&) dt ds) (1 - exp 1 F (t) dt) -1 + 0 (Atn+‘) (32) 

0 (I 0 

Comparing (31) and (26). (32) and (27). we find 

We remark that all the results obtained hold for the case of a system 
of equations of neutral type, whereby condition (3) is replaced by the 
following: the eigenvalues Ak(t) of the matrix f(u) do not exceed unity 
in the modulus. 

In conclusion, I express my thanks to A. B. Vasil’eva for directing 
this work. 
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