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Consider a difference — differential equation of neutral type
(@)= f@, z(t), z(t— At), =" (¢t — Ar)) 1)

where At > 0 is a small constant lag, and assume that there exists a
periodic solution with the period T of the degenerate equation

X @) =71@ x@), x0, %@, x (0) ==° 2
There the following theorem is valid.

Theorem. Let the function f = f(t, x, y, u) in a certain neighbor-
hood of the degenerate solution (2) have continuous second derivatives,
and satisfy in this neighborhood the condition

|1, <a<1 3)

Moreover, let the degenerate solution be asymptotically stable in
the first approximation, i.e.

Feor + oy <<— B, B>0 (4)

where the parenthesis around the indices indicates that the derivatives
are being taken along the degenerate solution.

Then, for sufficiently small At, there exists a unique periodic solu-
tion with period T of equation (1).
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Asymptotic representation of a periodic solution 1761

For this solution we shall construct an asymptotic representation in
powers of the small lag At.

Proof. Let us construct successively the functions z (t), determining
them as solutions of the equations

g () = f(zp, (1), 2y E—AY), ., (t— AD) 0 <t LT (5)
T =2, (T<+ 1) for—Att<O
o () =y (&) for — ALt <0

From the results of the paper by Vasileva [1] it follows that the
solution of equation (5) exists, if inequality (3) is fulfilled. We
prove that sequence {x (t)} is uniformly bounded and equicontinuous on
the segment [ — Ae, 7). We have

T — = [ xo [ze))y (2] — {6 2% % X)) =1,* (@—20 + f* 2o —x] +
+ fX e —x1+ R (6)
Here
[Ry={f (% Ixl XD — 7 (& 2% % %) | <CiAL

and we shall denmote [z] = z(t — At); the star indicates that the argu-
ments are taken at an intermediate point.

From [1] follows
[@g— % | <CAL, |z — x| <CAL — A<t D )
Then
fzo— x — [zo— X1 <CAL, 2" — ¥ — [zs'— X1 < CAL
(the second inequality foilows from equation (6)); therefore equation
(6) mey be written
g — % = (foy T fy) (o — %) ¥ fruy (zd — %) + R 9 0 (A8 (8)
2g—x=0 fort=20
Solving this ordinary differential equation, we obtain

¢ ¢
To— X = S[R + 0 (A)] expg fim & f(u) dE ds
0 3

and consequently, because of (3) and (4)

lxo—x1<1*’g“clAt+om:2><(“§“c&1)m=cm )

Denoting

by = max |f |, by = max |f,|
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for points pertaining to a certaln neighborhood of the degenerate solu-
tion, We obtein easily from (8) and (9)

ey +

Cy+1
1+ )At (10)

w1 <Y et G
Similarly, from [1] we have
o, — % | << CAt, r, — x| < CAt
Then again
@y =% — [z — %] | <CCAL, ' — oy — {ay — x| < CAR
Therefore

' —y = (f(x) + f(l;)) (zy — %) + frufdzr — ¥} + R 4 0 (A8

From this, using (5) and (9), we obtain

u-—m<0An”V+Qm, 1=
lzy — % 2< &Az{’"{% x)+c‘ At
Reasoning analogously we obtain
| @y — %1 <Calt [t b g+ a2+ ...+ o) + 1] <
< CyAL {i‘li’"t?l‘? 1]: 1:2‘1‘ Cobt gy =T <) (11)

b by) (2 — C !
120 — A 1 < ((;i‘ai}a)(& — aa:)) CaAt = .,il.i_. At (12)

From this follows the uniform boundedness and equicontinuity of
sequence {x (t)} on the segment —At <t <T,

Let us prove that on this segment sequence {x (t)} and the sequence
of the derivatives {x (t)} are uniformly convergent The limit function
will evidently give the solution of the problem posed.

Thus, let us consider the differemce x ., — x_ . It satisfies the
equation

T = [ wpyy — oz gy — z,) + 1. lx.nﬂ — Tyl

As in the proof of the uniform boundedness of the sequence, we pass
to the ordinary differential eguation, estimating first the differences

[ Zpey = Tp — lZpyy — 2l 1y 120y — 270 — [@ny — 21
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As a result we obtain

x.n+1 — Ty, = (fx_* + /u*) (xn+1 - xn) + fu* (z.n+1 - x'n) + 0 (Rn)

or
f*+f*
Ty — Ty = T:—/‘::—(znﬂ —z,)+ 0 (R,)
an l <CAt (gn + g11—1 + nn + nn—l)' gn = max l x'n+1 - Iy

Np = SUP |20y — Ty |
t

*
Tt (t) — Tp (t) = (In+1 (0) — Ty (0)) exp S fx j
0

-——‘:f"—*ds + O0(R,)
1— 7>
From (15) it is easy to obtain
V2ney (1) — 2, (1) | < ay |2y 0) — 2, (0) |+ |0 (R |
But by construction
Tnyp (1) — 2, (1) = 23,5 (0) — 2, (O)

therefore the lnequality takes on the form

[ Zpag (0) — 20, O) | <Toay [ 7, (0) — 2, (O) |+ [ O (R

From the formula analogous to (15) it 1s easy to conclude for the

difference To4g < Xp

§n+1 < I xn+1 (0) - In+1 (0 )] + 0o (Rn+1)|

On the other hand, by definition

lx'ﬂ-{-[ 0 — =z, (00| < En
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(15)

(16)

(17

By means of (16), (17), (18), (13) and (14) we obtain ‘L~ recurre,. a

formulas

g <aifpy +CAEE,, + &+, + 0

by = by, .,
_11'___ az Snyp T CAL(E,,, + &, Ny T 7

T]m'.’ <

Let o
have o < CAt. We prove that for n > ¢ the formula nolds

g <l(ag+ "2 (e >>0)

o — max (§;, §,, n;, n,). Because of estimates (1) und (1% we

2%

where € is arbitrarily small for At - 0. We use the method of induction.

From (19) we have
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s <ayap + CAtbay = (a, + 4CAD ay < (a; P &) dg

it
e > 4CAt (21)
If together with (21)
by + by 62 2 4CAt
e>CAt (1+ T—ata a ) (22)

is also fulfilled, then
b1+bz

Be <Taylay ¥ &) ag + CAL {205+ (ay 4 &) ag + (ay -+ €) aq -+ 4CAtay) <

+ b ZCAt 4C2 A2
<lay + ¢ (al—i‘-CAt—}—i 2CA +a1+8+a1+8>ao<(a1+8)2‘10

Let moreover € satisfy also the estimate

e>car(t4+ 250 (1, ) (23)

Assuming now that for n <= inequality (20) is true, we prove it for
n=mn+ 1, From (19) we have

Emeg < @ (2 &) ag + CAt [(a1 + O™ P (g + ™ lay

b b
R T IV (RSP LN

b
ot O ey AT g, g BT

R R AR O S L PR L VAL

Pt e ] Jemt s ol onos 422

(5 0 om (2 (4 o <

+

(a, 4 )™ %a, &

<o (o + oy o+ oae (14 252) 4 (1 - BEE) (1 4 oan x
x (oo mom)) = o o+ o o+ cae (145 52) (14 -5 2o

Since estimate (23) is fulfilled, we have
Emag < (1 4 &)™ a0

which was to be proved.

Since a, + e <1, from (20) and (19) follows the uniform convergence
of sequences {xn(t)} and {xn’(t)} on the entire interval ~At <t <T.

Thus, the existenee of a periodic solution of equation (1) is proved.
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We prove that in a small neighborhood of the degenerate solution there
does not exist another periodic solution of equation (1) different from
the constructed one,

Let another periodic solution %, of equation (1) exist. Then, repeat-
ing for the difference x - % the reasoning carried out for the proof
of the convergence of sequence {xn(t)}, we obtain

(name,(nH)T] ‘ z — xll < (al + G)n_2 maX[O‘T] | r — xll

where ¢ > 0 is small, as is the selected neighborhood of the degenerate
solution.

Since x and x, are periodic

MAX[n7 (ney)T) | € — 21| = maxg 7|z — 2|

and since in & small neighborhood of the degenerate solution ay +o0<1,
x - xll = 0, as was to be proved.

The theorem is now proved. We pass to the question of construction of
the asymptotic representation.

By construction of the periodic solution and because of inequalities
(11) and (12), we obtain the formula for the zero approximation

Xy =24 =7 |z — Xo| < CAt, |z — Xy | < CAt (24)

Consjder the following series whose partial sums give the necessary
asymptotic formulas:

> Atz (1 (25)

k=0

Substituting this series into equation (1), expanding the right-hand
side by powers of At, and equating the coefficients of equal powers of
At, we obtain equations for the terms of series (25). For example

x.' = ,(t, Zg (l), To (”, 370' (t))v xl' = ,f(x)zl + f(u) (1‘1 - xo‘) + f(u) (‘rl‘ - 1-“'.)

z () = fxe + Top (12 + ”%‘!’ - x1>+ T <1'z + '02_!"—‘ 11) + flax) Q‘;‘"f‘

2'12

A 'f(yy) <2_‘—TE2—°-':— zlzo')+ f(uu) (o4 f(xu) (vo) /(xu.) (o) + f(yu) (...

However, to determine the terms of series (25), it 1s necessary to
give the initial conditions. The initial condition for the zeroth term
xy(0) = ° is known, therefore xy(t) will be found. We transcribe now
the equation for the functions xk(k =1, ..., n), separating in it the
terms containing X, and denote the remainder by Dk(t)
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z, (1) = (f(x) + f(y)) z, + faw z, < Dy (1)
Or, solving for the derivative, we obtain

zk‘ = Fz‘k {} B/C' F = (f(x) + f(u)) (1 - f(u))_lr B[c = Dk (1 - f(u))-l (26)

We remark that the remainder Dk(t) contains functions x(t) for i < k.
Assume that all . (t) for i < k are found and that all the functions
x;(t) (i < k) are periodic with period T, we shall determine then 23(0)
from the condition of periodicity of the function zp(t).

Solving equation (26) we obtain

T T T
2 =2, @exp \ F@Oae+ B exp (7@ a8 as

4] 8

But by the condition of periodicity xk(T) = ’k(o)' Therefore we have
finally

T T T
z, (0) = (SB,‘ (9 exp \ 7 @ dtas ) (1— exp {7 dt) @7)
0 s 0
Thus, knowing x(t) for i < k, we determine also x,(t). Since for
unity the assertion is true, using the method of induction, one can find
all xp(t) for k =0, 1, ..., n. We remark that all functions x,(t) are
periodic with the period T.

We prove now that if the initial conditions are determined by formula
(27), then the function

n
X, = ) At'z, (28)
v=0

differs from the periodic solution of equation (1) by a magnitude of
the order 0(At"+1).

As was already established, A) = x —x, = OAt) "and A= x - %" =
O(Avy.

Let us separate now in the equation for Ao the terms with accuracy
to OcAt?)y. We have

Ay = f U, Ay 4 =0, [Ag + =0l [A¢ + zy')) — f (& oy Zos z) = [x*8e + fy‘ [4,] +

<+ fu* [Ag) < f (2, 2, [zol, (=o' — f (2 zoy T zy) = f(x)Ao $ f(y) Ay + f(u) Ay &
+ D, () At 4 O (A8}
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or

Ay = FAy+ B,At + O (At?) (29)

Because of the periodicity of fhe functions x and zg, their differ-
ence Ao(t) is also periodic with the period T. Solving equation (29)
and using equality AO(O) = Ay (T, we find

Ay (0) = At (§ B, (s) exp g F ) dt ds) (1 — exp § F (1) dz)"<;> 0 (A1) (30)
[\ 8 0

Comparing formulas (26) and (29), (27) and (30) for ¢ = 1, we find
|z — (2o + Atzy) | < CAZ, Ja" — (xy + Atxy) | L CAL

Thus, let for k<X n - 1 the estimate
le — X, | < CALFY, |z"— X, | < CA**1

be proved. We show that it is true also for k¥ = n. Indeed, proceeding
as in the proof of the first approximation, separating in the equation
for the difference An_1 = x - X, _, terms with accuracy to O(At"+1) we
find

A,y =FA,_,+ ArmB, ¥+ 0 (A™Y) (31)

Since An_l(O) = An_1(73, we find from (31)

T

A, ,(0) = A" (S B, (s exp§ F(¢)dt ds) (1 — exp § F (1) dt) “1E oA (32)
0 8 0

Comparing (31) amd (26), (32) and (27), we find
lz — X, | <CAm+1, |z'— X/ | <CAm+1 (33)

which was to be proved. From the above it is clear that for estimate
(33) to be fulfilled, it is sufficient that the function f be n + 1
times continuously differentiable in a certain neighborhood of the de-~
generate solution (n 2>1).

We remark that all the results obtained hold for the case of a system
of equations of neutral type, whereby condition (3) is replaced by the
following: the eigenvalues Ak(t) of the matrix f(u) do not exceed unity
in the modulus.

In conclusion, I express my thanks to A.B. Vasil’eva for directing
this work.
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